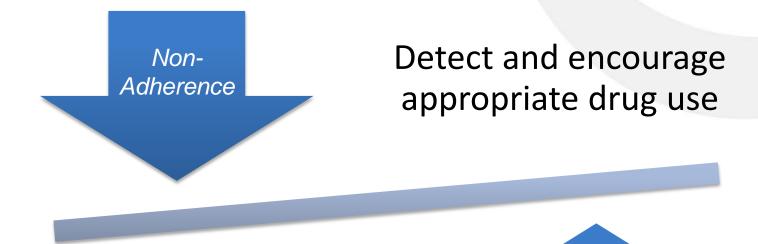


## Appropriate utilization of drug tests for pain management patients

Gwen McMillin, PhD, DABCC (CC, TC) Medical Director, Toxicology, ARUP Laboratories Associate Professor (clinical), University of Utah




### Drug testing in pain management

- Baseline testing
- Routine testing
  - Periodic, based on patient risk assessment
  - To evaluate changes
    - Therapeutic plan (drugs, formulations, dosing)
    - Clinical response (poor pain control, toxicity)
    - Clinical events (disease, surgery, pregnancy)
    - Patient behavior



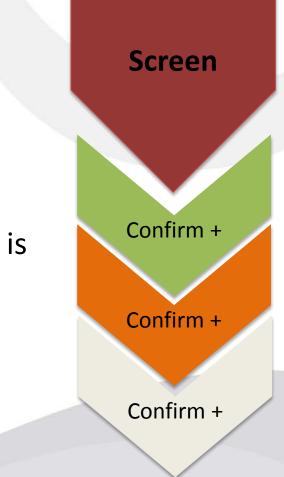


### **Objectives of drug testing**



## Detect and discourage inappropriate drug use

Adherence




#### Traditional approach

- Immunoassay-based screen
- Confirm positive results with a mass spectrometric method (GC-MS, LC-MS)

Not appropriate for pain management

- Need to confirm positive screen results is limited to certain drug classes
- Confirmation of negative screen results may be important
- Immunoassays are not useful for detection of all drugs of interest



Positivity rates in urine drug testing for pain management

• ~80% of urine specimens collected for the purpose of adherence testing are positive

 <5% of positive results fail to confirm, with the exception of amphetamine tests

• False negative results occur frequently



## Positive results "missed" by immunoassay vs LC-MS/MS

| Compound      | Immunoassay<br>cutoff<br>(ng/mL) | LC-MS/MS cutoff<br>(ng/mL) | % missed by<br>immunoassay<br>(total n ~8000) |
|---------------|----------------------------------|----------------------------|-----------------------------------------------|
| Codeine       | 300                              | 50                         | 29.6% (45)                                    |
| Hydrocodone   |                                  | 50                         | 23.3% (701)                                   |
| Hydromorphone |                                  | 50                         | 69.3% (1878)                                  |
| Alprazolam    | 200                              | 20                         | 53.3% (646)                                   |
| Nordiazepam   |                                  | 40                         | 40.0% (320)                                   |
| Clonazepam    |                                  | 40                         | 66.1% (119)                                   |

Mikel et al., *TDM* 31(6):746-8, 2009 West et al., *Pain Physician* 13:71-8, 2010



#### Immunoassay detection

|                                            |                   | SAMHSA cutoff:<br>2,000 ng/mL                  | Cutoff                                                                 |
|--------------------------------------------|-------------------|------------------------------------------------|------------------------------------------------------------------------|
|                                            |                   | Medical<br>immunoassay<br>cutoff:<br>300 ng/mL | <ul> <li>Calibrator</li> </ul>                                         |
| Medical<br>LC-MS/MS<br>cutoff:<br>10 ng/mL | -MS/MS<br>cutoff: |                                                | <ul> <li>Cross-reactivity<br/>profile of the<br/>immunoccov</li> </ul> |
|                                            |                   |                                                | immunoassay                                                            |



## Concentrations (ng/mL) required to trigger a positive opiate (300 ng/mL cutoff)

|                      | EMIT    | CEDIA  | Triage |           |
|----------------------|---------|--------|--------|-----------|
| Morphine             | 300     | 300    | 300    |           |
| Codeine              | 247     | 300    | 300    |           |
| 6-monoacetylmorphine | 1088    | 300    | 400    |           |
| Hydrocodone          | 364     | 300    | 300    |           |
| Hydromorphone        | 498     | 300    | 500    | _         |
| Oxycodone            | 5,388   | 10,000 | 20,000 | False     |
| Oxymorphone          | >20,000 | 20,000 | 40,000 | negatives |
| Noroxymorphone       | -       | -      | -      | likely    |



## Concentrations (ng/mL) required to trigger a benzodiazepine positive (300 ng/mL cutoff)

|                     |        | Nex    |                  |                                       |
|---------------------|--------|--------|------------------|---------------------------------------|
|                     | EMIT   | Screen | Triage           |                                       |
| Alprazolam          | 79     | 400    | 100              |                                       |
| Alpha-OH-alprazolam | 150    | N/A    | 100              | - False                               |
| Clonazepam          | 500    | 5,000  | 650              | negatives                             |
| 7-amino-clonazepam  | 11,000 | N/A    | N/A              | likely                                |
| Chlordiazepoxide    | 7,800  | 8,000  | 13,000           | incory                                |
| Nordiazepam         | 140    | 500    | 700              |                                       |
| Diazepam            | 120    | 2,000  | 200              |                                       |
| Oxazepam            | 350    | 300    | 3,500            |                                       |
| Temazepam           | 210    | 200    | 200              |                                       |
| Lorazepam           | 890    | 4,000  | 200<br>AKEPLABOR |                                       |
|                     |        |        |                  | ATORIES NATIONAL REFERENCE LABORATORY |

# Drugs that could cause a false positive amphetamine test

- N-acetylprocainamide
- Chlorpromazine
- Phenylpropanolamine
- Brompheniramine
- Trimethobenzamide
- Pseudoephedrine
- Tolmentin
- Propylhexedrine
- Ranitidine

- Labetalol
- Perazine
- Promethazine
- Quinicrine
- Buflomedil
- Fenfluramine
- Mephentermine
- Phenmetrazine
- Tyramine

- Ephedrine
- Talmetin
- Nylidrin
- Isoxsuprine
- Chloroquine
- Isometheptene
- Mexiletine
- Phentermine
- Ritodrine

Adapted from: Broussard L, Handbook of Drug Monitoring Methods, Humana Press, 2007



#### Performance challenges

- Cutoff discrepancy
- Test not designed to detect drug

#### Poor sensitivity

#### Poor specificity

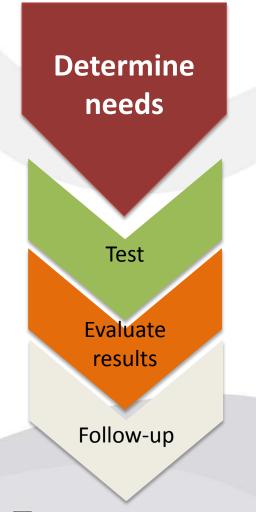
- Cross-reactivity profile
- Calibrator

#### Unexpected ("false") results

 Poor alignment of confirmation test

#### Poor agreement




#### Impact of traditional approach

- Inappropriate selection and interpretation of screen results
- Inappropriate selection and interpretation of confirmation tests
- Unnecessary costs of testing associated with inappropriate testing
- Poor patient-provider-laboratory relationships



## Evolving approach

- Understand needs
- Understand testing options and limitations
- Select best test
- Evaluate results
- Targeted testing for unexpected or inadequate results, or when quantitation is needed



#### Case Example 1

- Pharmacy history
  - Prescribed methadone and lisdexamfetamine dimesylate
- Screen results
  - POSITIVE for methadone, amphetamine, and THC
  - NEGATIVE for methamphetamine, oxycodone, opiates, and all other drug classes tested
- Patient history
  - Admits to occasional use of marijuana (THC)



#### Case Example 1 (cont)

• Interpretation based on expectations:

Results are consistent with expectations

- Confirmation tests not needed
- Document results of investigation and final interpretation
- Reflex testing approach:
  - 3 confirmation tests would have been ordered
  - Additional office visit(s) may have been required

Unnecessary expenses!!!



#### Case Example 2

- Pharmacy history
  - Prescribed oxycodone, hydrocodone, clonazepam, and methylphenidate
- Screen results
  - POSITIVE for oxycodone and opiates
  - NEGATIVE for benzodiazepines, amphetamines, and all other drug classes tested
- Patient history

Insists on adherence to prescribed therapy



#### Case Example 2 (cont)

• Interpretation based on expectations: results are NOT consistent with expectations

• Post-analytical investigation (laboratory):

- Clonazepam sensitivity of the benzodiazepine screening test that was used is poor
- Methylphenidate is not detected by the screen



#### Case Example 2 (cont)

• Interpretation based on expectations: results are consistent with expectations

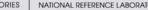
- Post-analytical investigation (laboratory):
  - Clonazepam sensitivity of the benzodiazepine screening test that was used is poor
  - Methylphenidate is not detected by the screen



#### Case Example 2 (cont)

#### **Recommendation:**

- Confirm periodically, if concern arises, and/or if results impact clinical management decisions
- Document results of investigation and final interpretation
- Reflex testing approach:
  - 1 confirmation test would have been ordered
  - 2 possible false negative results remain unresolved
  - Could compromise patient care and relationship between the physician and the laboratory




# Is adulteration testing necessary?



#### Adulteration in urine drug testing

- Reduce signal/noise
  - Dilute specimen
  - Increase analytical noise
- Prevent drug-antibody interactions
   Charge interactions (pH)
- Destroy drug analytes
- Mimic drug use
  - -Urine substitution
  - Direct addition of drug to urine











### Examples of urine substitutes

- Beverages
- Animal urine
- Synthetic urine
- Human urine
  - Purchased
  - Obtained from friend or relative
  - Archived by patient



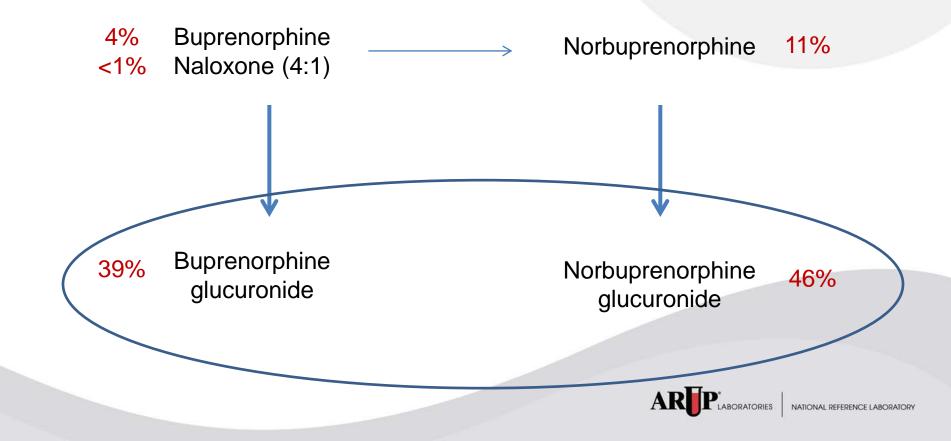


Common forms of adulteration testing

- Temperature
- Visual inspection
- Creatinine
- Specific gravity
- Nitrates
- Oxidants

Will these tests detect urine substitution or direct addition of drug to the urine?




#### Substitution may not be detected

| Sample               | Sample Check (%)<br>Microgenics, CEDIA | Creatinine (mg/dL)<br>Syva (Dade), EMIT |
|----------------------|----------------------------------------|-----------------------------------------|
| Human urine          | 80-100                                 | > 5 (DOT)                               |
|                      |                                        |                                         |
| Dog urine (n=7)      | 52 - 85                                | 87 - 284                                |
| Horse urine (n=1)    | 92                                     | 104                                     |
| Energy drinks (n=44) | 72-103                                 | 0-63                                    |
| Margarita mix (n=2)  | 73-74                                  | 71-76                                   |
| Fruit juice (n=8)    | 39-81                                  | 0-62                                    |

VP Villena, JAT 34:39-44, 2010



Simplified metabolism of Suboxone<sup>®</sup> and proportions in urine



### Results suggest drug was added

|    | BUP<br>(ng/mL) | NORBUP<br>(ng/mL) |
|----|----------------|-------------------|
| 1  | 39,400         | 24                |
| 2  | 39,200         | 36                |
| 3  | 31,100         | 20                |
| 4  | 20,200         | 23                |
| 5  | 19,300         | 11                |
| 6  | 18,800         | 31                |
| 7  | 15,000         | 7                 |
| 8  | 12,100         | 14                |
| 9  | 11,100         | 12                |
| 10 | 10,900         | 7                 |

#### NOTES:

#### Glucuronides were < 20 ng/mL

McMillin et al., JAT 36(2):81-7, 2012



## Results suggest drug was added

|    | BUP<br>(ng/mL) | NORBUP<br>(ng/mL) | Naloxone<br>(ng/mL) | BUP:<br>Naloxone<br>Ratio |
|----|----------------|-------------------|---------------------|---------------------------|
| 1  | 39,400         | 24                | 6,690               | 5.9                       |
| 2  | 39,200         | 36                | 9,560               | 4.1                       |
| 3  | 31,100         | 20                | 8,500               | 3.7                       |
| 4  | 20,200         | 23                | 5,160               | 3.9                       |
| 5  | 19,300         | 11                | 4,470               | 4.3                       |
| 6  | 18,800         | 31                | 4,430               | 4.2                       |
| 7  | 15,000         | 7                 | 2,300               | 6.5                       |
| 8  | 12,100         | 14                | 3,110               | 3.9                       |
| 9  | 11,100         | 12                | 2,920               | 3.8                       |
| 10 | 10,900         | 7                 | 3,010               | 3.6                       |

#### NOTES:

Expected ratio of BUP:Naloxone for Suboxone® = 4

Average ratio of BUP:Naloxone for these patients: 4.4

McMillin et al., JAT 36(2):81-7, 2012



## Why use blood for drug testing?

- Urine substitution is suspected
- Dialysis patients
- Evaluate pharmacokinetics
  - Unpredictable drug absorption (e.g. bariatric surgery, Crohn's disease)
  - Suspicious drug delivery/bioavailability
  - Polypharmacy (drug-drug interactions)
  - Altered metabolic status
  - TDM





#### Conclusions

 Clinical laboratories are in an excellent position to actively participate, and/or consult, regarding the drug testing needs of chronic pain management patients

 Utilization of testing should be based on the clinical needs and test performance characteristics, rather than traditional reflex testing approaches





© 2012 ARUP Laboratories